Search Space Properties for Mapping Coarse-Grain Pipelined FPGA Applications
نویسندگان
چکیده
This paper describes an automated approach to hardware design space exploration, through a collaboration between parallelizing compiler technology and high-level synthesis tools. In previous work, we described a compiler algorithm that optimizes individual loop nests, expressed in C, to derive an efficient FPGA implementation. In this paper, we describe a global optimization strategy that maps multiple loop nests to a coarse-grain pipelined FPGA implementation. The global optimization algorithm automatically transforms the computation to incorporate explicit communication and data reorganization between pipeline stages, and uses metrics to guide design space exploration to consider the impact of communication and to achieve balance between producer and consumer data rates across pipeline stages. We illustrate the components of the algorithm with a case study, a machine vision kernel.
منابع مشابه
Automated Mapping of Coarse-Grain Pipelined Applications to FPGA Systems
Configurable systems offer a unique opportunity to define application-specific architectures. These architectures offer performance advantages, where the use of customized pipelines exploits the inherent parallelism of the application. In this research, we describe a set of program analyses and an implementation that automatically map a sequential and un-annotated C program into a pipelined imp...
متن کاملA design flow for speeding-up dsp applications in heterogeneous reconfigurable systems
In this paper, we propose a method for speeding-up Digital Signal Processing applications by partitioning them between the reconfigurable hardware blocks of different granularity and mapping critical parts of applications on coarse-grain reconfigurable hardware. The reconfigurable hardware blocks are embedded in a heterogeneous reconfigurable system architecture. The fine-grain part is implemen...
متن کاملSearch Space Properties for Mapping Pipelined FPGA Applications
This paper describes an automated approach to hardware design space exploration, through a collaboration between parallelizing compiler technology and high-level synthesis tools. In previous work, we described a compiler algorithm that optimizes individual loop nests, expressed in C, to derive an efficient FPGA implementation. In this paper, we describe a global optimization strategy that maps ...
متن کاملMORA: A New Coarse-Grain Reconfigurable Array for High Throughput Multimedia Processing
This paper presents a new coarse-grain reconfigurable array optimized for multimedia processing. The system has been designed to provide a dense support for arithmetic operations, wide internal data bandwidth and efficiently distributed memory resources. All these characteristics are combined into a cohesive structure that efficiently supports a block-level pipelined dataflow, which is particul...
متن کاملCoarse-Grain Pipelining on Multiple FPGA Architectures
Reconfigurable systems, and in particular, FPGA-based custom computing machines, offer a unique opportunity to define application-specific architectures. These architectures offer performance advantages for application domains such as image processing, where the use of customized pipelines exploits the inherent coarse-grain parallelism. In this paper we describe a set of program analyses and an...
متن کامل